Das Wissen um Produkte, die häufig miteinander gekauft werden, ermöglicht es Unternehmen, gezielt und vor allem kundenorientiert ihr Sortiment anzubieten. Dabei ist die Analyse der Einkaufsmuster und die daraus resultierende Ableitung von Vorhersagen kein Privileg ausschließlich großer Onlinehändler mehr. Bereits mit einfachen Modellierungstechniken im Bereich Warenkorb-Analyse lassen sich wertvolle Erkenntnisse gewinnen, die Potenzial für mehr Umsatz und Ertrag bieten. Als schöner Nebeneffekt steigen Kundenbindung und -zufriedenheit, da die empfohlenen Produkte sich direkt aus dem organischen Kaufverhalten der Nutzer ableiten.

Wenn man im Onlinehandel von der Conversion-Rate spricht, ist im Allgemeinen das Verhältnis zwischen Besuchern und tatsächlichen Käufen gemeint. Naturgemäß versucht man eine möglichst hohe Rate zu erzielen, um den Umsatz zu maximieren.

Ein Schlüssel zum Erfolg ist die Personalisierung des Angebots, am besten in Echtzeit und sich dynamisch anpassend. Dies ist aktuell wohl der beste Ansatz, der sich im von Google geprägten Begriff der Micro-Moment Decision widerspiegelt.
Die Analyse von Einkaufsmustern ist eine Grundvoraussetzung für erfolgreiche Personalisierungsstrategien.
© IMAGO / Westend 61
Die Analyse von Einkaufsmustern ist eine Grundvoraussetzung für erfolgreiche Personalisierungsstrategien.
Dabei geht es um kurze und spontan auftretende, aber entscheidende Augenblicke, in denen Nutzer etwas kaufen, wissen, mitteilen oder erledigen möchten.

Dieses Feld ist weit gefächert, da es auch um Entscheidungsmomente abseits der eigenen Plattform und des eigentlichen Kanals geht, beispielsweise um Fragen wie „Hat ein Geschäft geöffnet?“, „Wo finde ich die nächste Filiale?“ oder „Gibt es ein alternatives Produkt oder einen besseren Preis?“.

Maximalen Nutzen aus dem "Moment of Truth" ziehen

Um hier nicht den zweiten vor dem ersten Schritt zu machen, empfiehlt es sich, die entscheidenden Momente der Customer Journey auf der eigenen Plattform genauer anschauen und entsprechend zu gestalten. Die naheliegende Lösung ist ein Blick in die eigentlichen Bestellungen, genauer gesagt in die Warenkörbe und deren Zusammensetzung.

Diese Analyse liefert wichtige Einblicke in das Kaufverhalten und vor allem in den berühmten „Moment of Truth“, also den Zeitpunkt, an dem die Entscheidung gefallen ist und die Bestellung tatsächlich abgeschickt wird.

Im ersten Schritt braucht es dafür nicht einmal Daten aus Web-Analytics oder anderen Werkzeugen, die Rohdaten des jeweiligen Backendsystems reichen dafür völlig aus.
Die Daten können dabei in nahezu beliebigen Formaten vorliegen, da die Analyse unabhängig vom zugrunde liegenden System durchgeführt wird.

Somit sind auch keine intensiven Berechnungen auf den Servern nötig, ein tagesaktueller Datenexport, ein geeignetes Framework sowie ein halbwegs potenter Rechner reichen im ersten Schritt aus.

Umsätze auf Basis gebildeter Kunden- und Produktsegmente erhöhen

Wie lassen sich nun anhand dieser Daten Umsätze steigern? Nehmen wir einen klassischen Shop mit einem heterogenen Sortiment.

Um den Abverkauf zu erhören, stellt sich in der Regel die Frage nach der Personalisierung im jeweiligen Kundenkontext: Welche Produkte werden gerne kombiniert bzw. sind komplementär? Lassen sich Kunden anhand ihres Surfverhaltens oder der Shop-Historie bestimmten Segmenten zuordnen?
Liegt ein Artikel, der häufig mit einem anderen Artikel zusammen gekauft wird, im Warenkorb, können Händler dieses Wissen nutzen und das zweite Produkt während des Check-out-Prozesses an prominenter Stelle empfehlen.
© AOL
Liegt ein Artikel, der häufig mit einem anderen Artikel zusammen gekauft wird, im Warenkorb, können Händler dieses Wissen nutzen und das zweite Produkt während des Check-out-Prozesses an prominenter Stelle empfehlen.
Durch das Clustern von Kunden in spezifische Gruppen können diese nach verschiedenen Kriterien bewertet und eingeordnet werden. Dadurch lassen sich Segmente bilden, in denen Kunden mit sehr ähnlichen Faktoren zusammengefasst werden.

Bislang unsichtbare Zusammenhänge erkennen

Unternehmen gewinnen dann den Überblick über verschiedene Kundenstämme und können ihre strategische Planung zur Kundenentwicklung auf die spezifischen Merkmale der jeweiligen Segmentierung ausrichten. Dies gewährleistet eine zielgruppengenaue Ansprache.

Zusätzlich lassen sich, auf den ersten Blick unsichtbare, Zusammenhänge von Produktkategorien erkennen. Nahezu automatisch wird so das Cross-Selling-Potenzial - also das zusätzliche Verkaufen von Produkten und Services durch ein gezieltes Angebot - eines jeden Produkts aufgedeckt.

Verkaufstrends, Customer Journey, Preisgestaltung: Auf Basis der In-Memory-Technologie können Unternehmen schnell datengetriebene Entscheidungen treffen.
© IMAGO / Panthermedia
Datenanalyse

Wie Otto sich für das wachsende Datenvolumen wappnet

Wenn Whisky mit Brandy kombiniert wird

Konkretes Beispiel: Sie erkennen, dass Whisky gerne mit Brandy kombiniert wird und Champagner gerne mit Gin. Liegt nun einer dieser Artikel im Warenkorb, kann eine prominente Empfehlung des zweiten Produkts während des Checkout-Prozesses ebenfalls zu einem Kauf führen.

Aber auch Up- und After-Selling sind so möglich. Die Warenkorb-Analyse der bestehenden und wiederkehrenden Kunden wird Aufschluss geben, welche Artikel in der Folge einer Bestellung ebenfalls gekauft wurden und mit welcher Häufigkeit.

Geben es die eigenen Produktdaten her, lassen sich auch Aussagen über das Qualitätsbewusstsein der Kunden machen, indem beispielsweise höherwertige Produkte nach einem Kauf oder nach einer gewissen Zeit gekauft werden.

DSGVO-konform mit geringem Aufwand valide Ergebnisse erzielen

Mit diesem Ansatz lässt sich herausfinden, welche Produkte sowohl ad hoc als auch über eine gewisse Zeit miteinander kombiniert werden und welche sich gegenseitig ausschließen.

Dabei geht es nicht um offensichtliche Kombinationen wie beispielsweise Zahnpasta und Zahnbürste. Sie werden herausfinden, dass mit einer gewissen Signifikanz immer die gleichen Produkte im Warenkorb landen. Entweder bei den gleichen Kundensegmenten oder vergleichbaren Zusammensetzungen der Warenkörbe.

Anhand dieser Erkenntnisse lassen sich konkrete Regeln ableiten und mit den geeigneten Werkzeugen leicht in den Shop integrieren. Im ersten Schritt kann dies über fest definierte Regeln beispielsweise direkt im Shop-System oder über ein Tag-Management-Werkzeug erfolgen.
Bereits mit einfachen Modellierungstechniken lassen sich bei der Warenkorb-Analyse wertvolle Erkenntnisse gewinnen und passende Marketingmaßnahmen ableiten.
© AOL
Bereits mit einfachen Modellierungstechniken lassen sich bei der Warenkorb-Analyse wertvolle Erkenntnisse gewinnen und passende Marketingmaßnahmen ableiten.

Tagesaktuelle Auswertung

Wo bleibt da die Automation, werden Sie sich jetzt zu Recht fragen. Bei diesem Ansatz liegt die Automation in der kontinuierlichen, tagesaktuellen Auswertung der eingangs beschriebenen Rohdaten, um fortwährend Erkenntnisse zu erlangen und zu validieren.

Die hier beschriebenen und abgeleiteten Regeln werden zwar in der Regel hart codiert, funktionieren dafür aber auch zuverlässig und sind völlig DSGVO-konform und bedürfen keiner Cookie-Zustimmung durch den Nutzer, da keine personenbezogenen Daten verwendet werden.

Je mehr Daten, desto besser

Es geht sogar noch einen Schritt weiter und ist Ad-Blocker-konform, da die Produkte durch das Shop-System und den darin gehaltenen Warenkorb ausgespielt werden und nicht zwangsweise im Browser der Benutzer stattfinden müssen.

Auch ist die Erfolgsmessung der jeweiligen Maßnahmen schnell erledigt und lässt sich mit der bis dahin aufgesetzten Analyse einfach validieren und darstellen. Natürlich gilt der Grundsatz, je mehr Daten vorhanden sind und verwendet werden können, desto besser.

Auch kann man gewisse Anforderungen an die Art der Rohdaten stellen, um noch tiefere Einblicke zu erhalten: So kann beispielsweise die Reihenfolge, in der Produkte in den Warenkorb gelegt werden, eine Rolle spielen und es wäre von Vorteil, wenn die Rohdaten diese Reihenfolge entsprechend beibehalten.

Passgenaue Produktplatzierungen

Durch eine Optimierung der Produktplatzierung mittels Assoziationsanalysen können passgenaue Produktplatzierungen sowohl im stationären Einzelhandel wie auch im Onlinehandel ausgespielt werden.

Produkte, die häufig miteinander gekauft werden, können gezielt platziert werden, ohne dass Kunden eine Odyssee durch diverse Regale oder Gliederungsbäume durchlaufen müssen.
Die kontinuierliche, tagesaktuelle Auswertung von Warenkorbdaten liefert wichtige Einblicke in das Kaufverhalten und den "Moment of Truth", in dem die Entscheidung gefallen ist und die Bestellung abgeschickt wird.
© IMAGO /Shotshop
Die kontinuierliche, tagesaktuelle Auswertung von Warenkorbdaten liefert wichtige Einblicke in das Kaufverhalten und den "Moment of Truth", in dem die Entscheidung gefallen ist und die Bestellung abgeschickt wird.
Geschieht dies möglichst spät im Laufe des Einkaufsprozesses, ist ein Absprung der Nutzer unwahrscheinlich. Die Warenkorb-Analyse bietet allerdings noch weitere Erkenntnisse und Möglichkeiten der Optimierung:

  • Top-Seller erkennen: Produkte, die häufig gekauft oder nachgefragt werden, können mit einer Warenkorbanalyse leicht erkannt werden. Das schafft Planungssicherheit beim Einkaufsprozess und ermöglicht eine vorausschauende Planung.
  • Vermeidung von Ladenhütern: Produkte, die wenig nachgefragt werden, können mit einer Warenkorbanalyse erkannt werden. Mit Hilfe von betriebswirtschaftlichen Strategien können unliebsame Ladenhüter so gezielt vermieden und umgangen werden.
  • Preisgestaltung: Bei zusammengehörigen Produkten führt eine Erhöhung der Verkaufszahlen eines Produktes z.B. durch Rabatte zu einer Erhöhung des assoziierten Produktes, ohne dass auch hier eine Preisreduzierung erfolgen muss.
  • Stärkung der Kundenbindung und -zufriedenheit: Jeder Aufwand führt letztendlich dazu, dass sich der Kunde in seinen Bedürfnissen erkannt und verstanden fühlt. Somit sind die Kunden zufriedener, wodurch diese eher wieder bei dem gleichen Anbieter einkaufen.
Abschließend bleibt festzuhalten, dass eine Analyse der Shop- und Kundendaten beliebig komplex und aufwendig sein kann. Das hängt von der Datenqualität und -menge, dem verwendeten Framework und der Technologie ab, nicht zuletzt aber auch von den beteiligten Personen, deren Anforderungen und Zielen.

Mit der reinen Warenkorbanalyse basierend auf Shop-Rohdaten ist in kurzer Zeit und mit vergleichsweise geringem Aufwand ein valides Ergebnis zu erzielen, welches zusätzlich nicht im Konflikt mit dem Datenschutz steht.

MEHR ZUM THEMA:

Beim Thema Daten haben Onlineanbieter naturgemäß einen Vorteil. Aber auch stationäre Händler können durch Analyse von Nutzer- und Produktdaten interne Prozesse verbessern und die Kundenzufriedenheit erhöhen.
© IMAGO / Shotshop
Digitalisierung

Wie der Handel mit Datenanalysen zurück ins Geschäft kommt


Wachsender Onlinehandel, wachsende Cyberkriminalität: Hacker nutzen jede Möglichkeit, um Shopping-Plattformen zu infiltrieren und Kunden- und Kreditkartendaten abzugreifen.
© imago images / Westend61
IT-Sicherheit

Wie Händler sensible Kundendaten besser schützen


Geografische Informationssysteme und raumbasierte Analysen sorgen für Transparenz in der Lieferkette.
© Esri
Location Intelligence

Die Macht der Geodaten